

A Hierarchical Semantic Overlay for P2P Search

Tao Gu*, Hung Keng Pung, Daqing Zhang

*Research Scientist, Institute for Infocomm Research

*Email: tgu@i2r.a-star.edu.sg

*URL: www1.i2r.a-star.edu.sg/~tgu

<u>Outline</u>

- Motivation
- Our approach
 - Overview
 - Data model
 - Ontology design
 - Semantic clustering
 - Peer identification
 - Top-level overlay
 - Low-level overlay
- Some preliminary results
- Conclusion

Motivation

Unstructured P2P systems

- Pros: do not impose any structure on the data; easy to handle the dynamic changes of peers and their data; low overlay maintenance cost, etc.
- Cons: flooding-based routing algorithm generates large amount of redundant messages; not scalable.

Structured P2P systems

- Pros: efficient routing; good scalability, etc.
- Cons: data placement and network topology are tightly controlled; high overlay maintenance cost.

Hybrid P2P systems

- Combine the advantages of both unstructured and structured P2P systems
- Our approach A Hierarchical Semantic Overlay Network falls in this category

Overview of Our Approach

- Ontology-based two-level semantic overlay
 - Top-level overlay: peers are grouped into a semantic cluster based on ontologies; semantic clusters are organized into a one-dimensional ring space.
 - Low-level overlay: semantic clusters can be organized into unstructured overlay or DHT-based overlay.
- Abstract data semantic based on ontologies
 - Hierarchical design for ontologies
- A DHT-based inter-cluster routing algorithm

Data Model

- The basic model an RDF triple
 - <subject predicate object>
 - E.g., <socam:TaoGu socam:homeAddress "XYZ">, or <socam:TaoGu socam:locatedIn socam:LivingRoom>
- Machine-understandable, -processable, good interoperability. Limit to representation methods.

Ontology Design

- Two-level hierarchy in the ontology design
 - The upper ontology defines common concepts in a computing/application domain
 - Lower ontologies define details/own concepts.
- Why two-level hierarchy?
 - A peer defines/stores its own lower ontology based on context data, no need to store all – smaller metadata size.
 - It allows the construction of a semantic P2P overlay network.

Ontology-based Semantic Clustering

- The basic principle:
 - The leaf nodes in the upper ontology are used as semantic clusters.
 - If the predicate of a data triple is of type ObjectProperty, we use <pred obj> pair
 - If the predicate of a data triple is of type DatatypeProperty, we use <sub pred> pair

Peer Identification

- Semantic Cluster ID
 - sid = hash("a leaf node in the upper ontology")
- Peer ID
 - peer $id = [hash_m("a leaf node in the upper ontology")][hash_n ("IP address")]$

Top-level Overlay

A Chord-based Low-level Overlay

Some Preliminary Results

Simulation Setup

- Two types of network topologies in our model: physical topology and P2P overlay topology.
- Parameters: m number of bits to represent semantic cluster,
 n number of bits to represent sub-cluster, M cluster size,
 N network size

Performance metrics

- Fraction of nodes contacted per query
- Search path length
- Search cost
- Maintenance cost

Search Path Length

- The average number of hops traversed by a query to the destination.
- $N = 2^8 \sim 2^{13}$
- M = 1 (disable clustering effect)
- n = 0 (disable parallel search)
- $\beta = 1/4 \text{ or } 1/2 \text{ or } 1/2^{\text{m}}$

Search Cost

- The average number of query messages incurred during a search operation in the network.
- N from 28 to 213
- m = 5
- n = 0 or 2, 3
- $\beta = 1/4 \text{ or } 1/2 \text{ or } 1/2^{\text{m}}$

Maintenance Cost

- The average number of messages incurred when a node joins or leaves the network. It consists of the costs of node joining and leaving, cluster splitting and merging, and index publishing.
- M = 32
- n = 2
- $m = 1 \sim 8$
- $\beta = 1/4 \text{ or } 1/2 \text{ or } 1/2^{m}$

Conclusion

- Conclusion
 - A hybrid approach to P2P search
 - Preliminary results shows efficiency
- On-going work
 - Building the simulator for the chord-based low-level overlay
 - Further evaluate the performance